ABDULLAH GÜL UNIVERSITY INSTITUTE OF SCIENCE ELECTRIC and COMPUTER ENGINEERING ANABİLİM DALI INDIVIDUAL COURSE DESCRIPTION

Course Ttitle	Code	Semester	T+U Hours	Credit	ECTS
MACHINE LEARNING	ECE-562	FALL+SPRING	3 + 0	3	10

Prerequisities and co-re-requisities Introduction to Computer Programming, Probability and Statistics, Linear Algebra

Туре	Elective				
Language	English				
Coordinat or	Assist. Prof. Dr. Zafer Aydin				
Instructo r	Assist. Prof. Dr. Zafer Aydin				
Adjunt	None				
Aim	This course provides an introduction to machine learning. Students will learn the concepts behind the algorithms by exploring the fundamental theoretical principles without going deeply into the mathematics and gain practical experience by applying the techniques on selected problems.				
	 Explain the types of learning techniques Explain the mathematical and algorithmic principles of fundamental classification, clustering, transf optimization methods 	ormation a			
Learning Outcomes	3. Solve a machine learning problem by applying the appropriate mathematical and algorithmic metho	dologies			
	4. Implement machine learning methods using an appropriate software (e.g. Python, WEKA)				
	5. Apply a machine learning method to a real problem by completing a course project				
Course Content	 Types of learning strategies Linear discriminants Neural networks Dimensionality reduction Probabilistic learning Support vector machines Unsupervised learning Optimization methods 				

WEEKLY	WEEKLY TOPICS AND PRELIMINARY STUDY					
Week	eek Topics Prelimanary Study					
1	Introduction and preliminaries: types of machine learning, weight space, curse of dimensionality, testing machine learning algorithms, overfitting, train testing validation sets, confusion matrix, accuray metrics, minimising risk, basic statistics					
2	Linear Regression Models: Linear basis function models, bias variance decomposition					
3	Linear Models for Classification: discriminant functions, linear separability, probabilistic generative models, probabilistic discriminative models					
4	Multi-layer perceptron: brain and neuron, perceptron, going forward, backpropagation of error, amount of training data, number of hidden layers, when to stop learning, neural network examples					
5	Multi-layer perceptron: neural network examples, derivation of backpropagation					
6	Midterm 1					
7	Radial basis functions and splines: receptive fields, RBF network, interpolation and basis functions					

8	Support vector machines: optimal separation, kernels
9	Support vector machines: SVM algorithm, extensions
10	Dimensionality reduction: linear discriminant analysis, principal component analysis, factor analysis,
11	Dimensionality reduction: independent component analysis, locally linear embedding, isomap
12	Midterm 2
13	Ensemble Methods: bagging, boosting
14	Ensemble Methods: stacking, model fusion strategies
15	Advanced Learning Methods: Pattern-based classification, clustering assisted classification, semi-supervised learning
16	Final Exam

SOURCES

SOURCES	
Lecture Notes	Lecture slides
Other Sources	 Course Textbook: Pattern Recognition and Machine Learning, Christopher Bishop, 2006. Additional Materials: Introduction to Machine Learning, 2nd ed. Ethem Alpaydin "Data Mining: Practical Machine Learning Tools and Techniques", Ian H. Witten, Eibe Frank, Mark A. Hall, Morgan Kaufmann Publishers, 2011. Machine Learning, The Art and Science of Algorithms that Make Sense of Data, Peter Flach Machine Learning: Hands-On for Developers and Technical Professionals, Jason Bell

ì

COURSE MATERIALS SHARING				
Documents	Lecture notes, slides			
Homeworks	10			
Exams	2 Midterm and 1 Final Exam			

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Midterm	2	30				
Homework	10	10				
Semester Project	2	40				
Final Exam	1	20				
Contribution of Semester Study		80				
Contribution of Final Exam		20				
TOTAL		100				

Course Category			
Sciences and Mathemetics	%50		
Engineering	%50		
Social Sciences	%0		

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS						
No		Contribution Level					
	Program Qualitications		2	3	4	5	
1	The skills of using mathematics, science and engineering information in advanced research				Х		
2	The skills of analyzing, designing and/or implementing an original system that will be able to solve an engineering problem					х	
3	The skills of using the required software, hardware and modern measurement equipments in their field of research					х	

4	The skills of planning independent research and implementing in detail		Х	
5	The skills of following literature, listening to and making technical presentation, writing a paper in academic level		x	
6	The skills of innovative and interrogative thinking and finding original solutions	Х		

Increasing from 1 to 5

ECTS/ WORK LOAD TABLE					
Activities	Number	Duration (Hours)	Total Work Load		
Course Length (includes exam weeks: 16x total course hours)	16	3	48		
Out of class study time (pre-study, practice)	16	8	128		
İnternet search, library work, literature search	1	5	5		
Presantation					
Homework	10	5	50		
Midterm Exam	2	20	40		
Final Exam	1	30	30		
Total Work Load			291		
Total Work Load/ 30			291/30		
Course ECTS Credit			10		